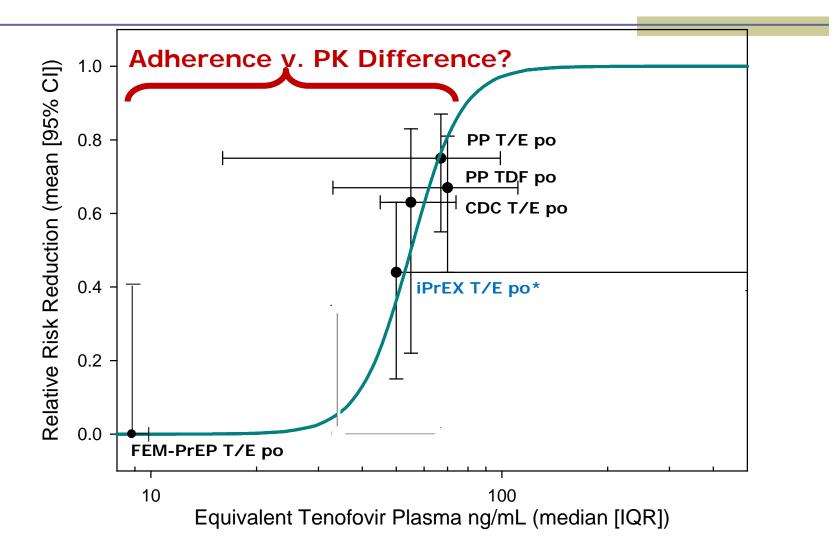
Pharmacological Approach to Monitoring Drug Adherence

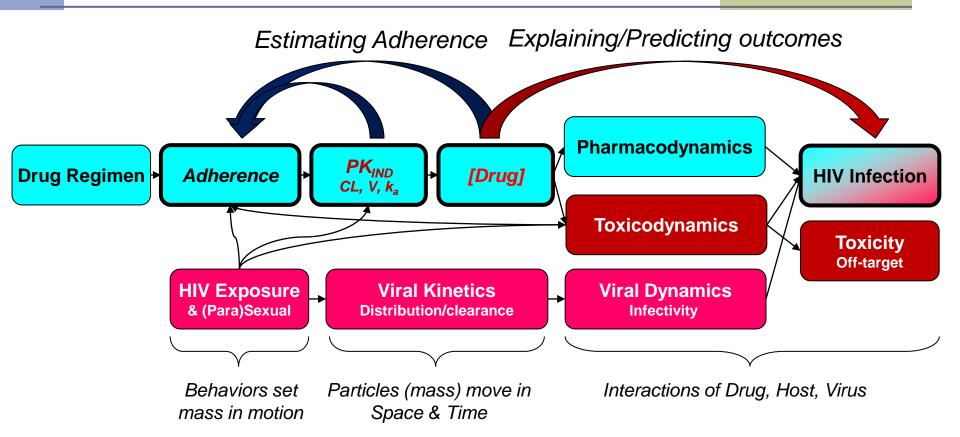
> Craig W. Hendrix, MD Johns Hopkins University

[Drug] - Adherence Questions


How much of [drug] variation is adherence?

Can [drug] quantitatively assess adherence?
 Population level?

Individual level?


How might [drug] be used to target adherence interventions?

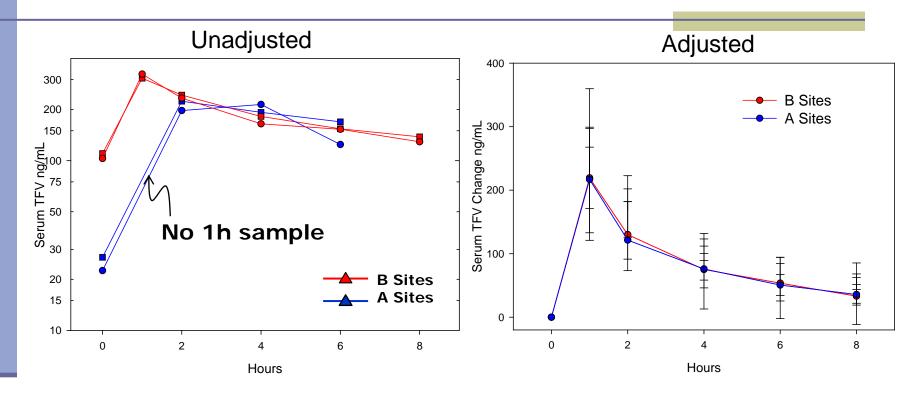
Conc'n-Response Among RCTs

*Adjusted for 66x \rightarrow increased colon tissue concentration & 20x \leftarrow greater anal transmission risk

Adherence-PK-PD Connections

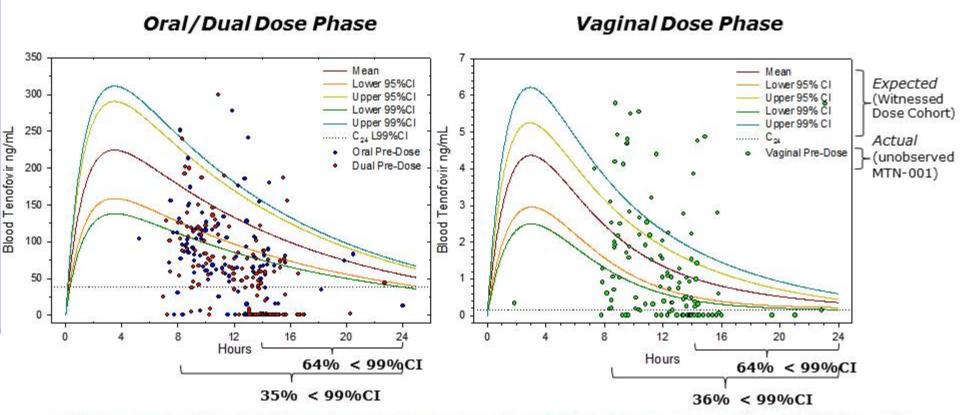
- [Drug] 2 steps from adherence
- [Drug] + PK_{IND} next to adherence
- [Drug] 2 steps from seroconversion PLUS many other variables

Population or individual level assessment?


Quantitative Adherence PK_{POP}

Collect biological specimen
Assay for drug concentration
Relate to 100% adherence standard

%Adherence = (Observed/Expected)•100 + σ + ϵ


- Observed collect sample, assay sensitivity?
- Expected population benchmark?
- Variables are they known?

Adherence or PK_{POP}?

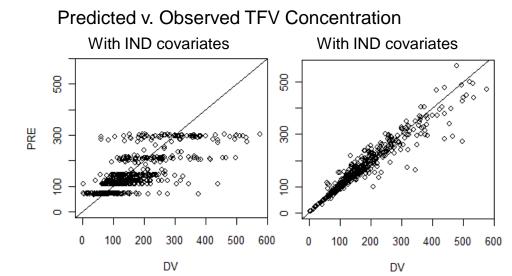
- Decay (PK) same after observed dose
- Pre-dose concentration (adherence, PK) 5:1 ratio
- Crude adjustment indicates same PK

Observed v. Expected [TFV]

How much of the low concentration is a result of PK_{IND}?

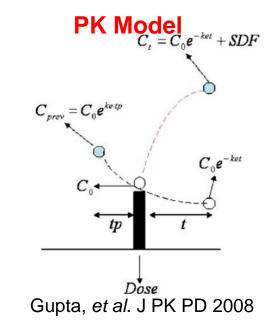
Individual data from MTN-001 shown in single data points overlayed on population estimates from single dose (underestimates, but directly observed) reference cohorts: JHU (ICTR, ¹⁴C-TFV), MTN-006, CONRAD Gel Study (Jill Schwartz)

Quantitative Adherence PK_{IND}


Expected Phase

- Directly observe initial dose
- Sample once or twice before second dose
- Population PK analysis estimate PK_{IND}
- Estimate expected value with 100% adherence
- Observed Phase
 - Subjects take meds without observation
 - Adherence assessment at intervals
- Data Analysis

%Adherence = (Observed/Expected)•100 + σ + ϵ

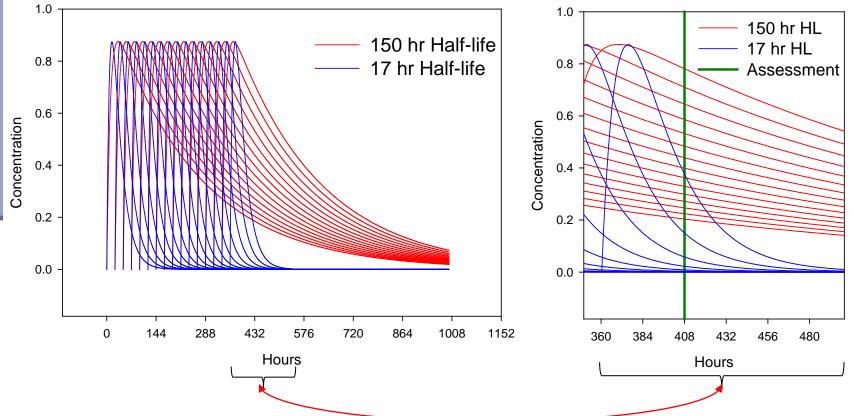

Estimating IND Expected Values

- Goal: Estimate individual concentration-time course based on 1-2 concentrations, individual covariates
 Population PK models
 - Estimate pop's PK (CL, V)
 - Estimate effect of individual covariates
 - CrCI, Age, Wt, gender, genetics, conmeds
 - Improve individual prediction

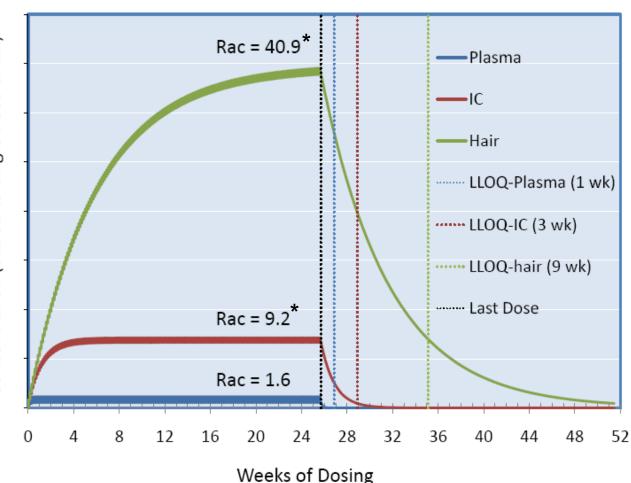
Adherence or PK_{IND}?

- Build non-linear mixed effects model
- Estimate PK (CL, V, k_a) and adherence (C₀) & influential covariates
- PK_{IND} (CL, V) covariates
 - CrCl, Age (significant)
 - Race (NS)
 - Location (NS)
 - Contraceptives (NS)
- Adherence (C₀)
 Location (*significant*)
 - A. Chaturvedula, manuscript in preparation

Sources of variation



Variables (Obstacles)


- What variables complicate quantitative adherence monitoring by [drug]?
 - Dose-proportionality
 - Dynamic range
 - Patterns of adherence
 - White coat effect
 - Intra-subject variability
 - Inter-subject variability
 - PK_{IND} Covariates
 - gender, age, meds, CrCI, PGx, hair color/Rx

Influence of Matrix Half-Life

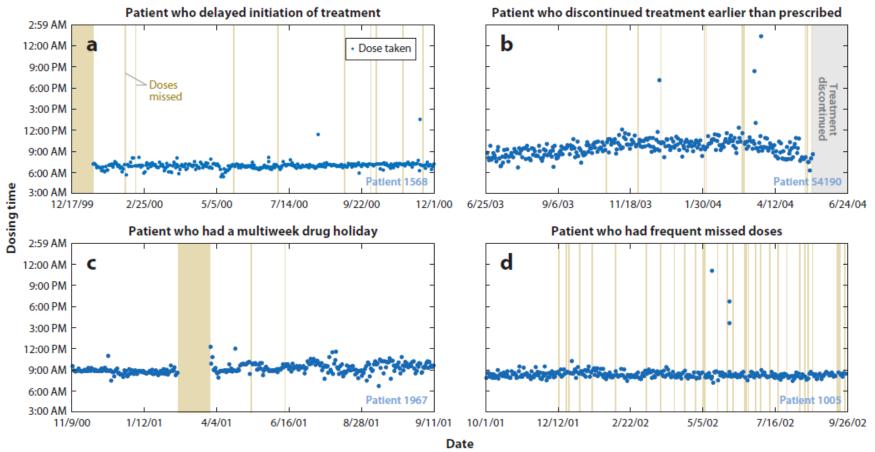
- AHL drug, more doses influence each observation
- Ψ HL drug, more influence of most recent dose
- None sensitive to drug holidays unless recent (ψ HL)

Matrix Selection Dynamic Range, LLOQ, T_{ss}

Dynamic range, - adherence $\sigma >$ biological/assay σ

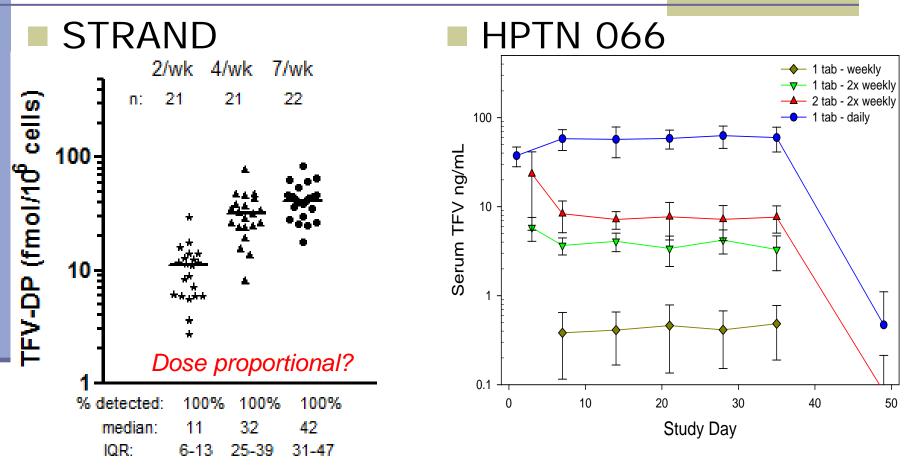
Time to SS - time before comparable

Time to LLOQ


- lookback duration
- holiday sensitivity

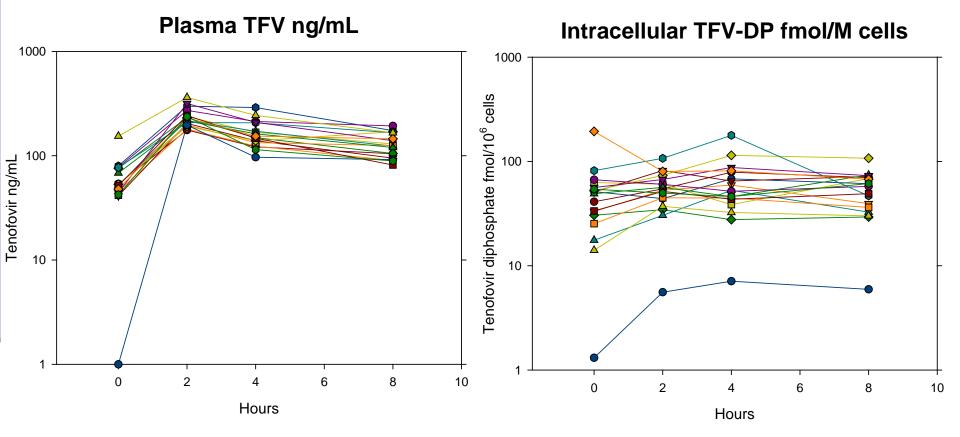
Assay Sensitivity - ? Topical dosing

*conjecture, estimated to be far greater than plasma


Variable Patterns of Adherence

"90% Adherence" takes many forms

Blaschke, et al. Ann Rev Pharm Tox 2012


DOT Benchmarks

Anderson, et al. Sci Trans Med 2012

HPTN 066 (CROI 2012)

White Coat Effect & Matrix

Note "*white coat adherence*" in subject still seen in TFV-DP, but not plasma after dosing, plasma; due to difference in *time to steady-state* and *accumulation index*.

Source: TDF2 (CDC Botswana PrEP, TDF 300 mg qd, steady-state, men & women)

Target adherence interventions?

PK-Targeted Interventions

- Both PK_{POP} & PK_{IND} data may be useful to target adherence interventions
- Different individuals "non-adherent" depending on method

Pop PK Calculation	Total (n=137)	A Sites (n=68)	B Sites (n=69)		
Below 20% Predicted IND	43 (31.4%)	34 (50%)	9 (13.0%)		
Below 99% CI Population	49 (35.8%)	38 (55.9%)	11 (15.9%)		
>1.5 x Population Lower 25%	36 (26.3%)	28 (41.2%)	8 (11.6%)		

Model based on MTN-001 Population PK model

PK_{POP}-Adherence Example

- MTN-017: 3 product, 8 week per product cross-over study
- 4 & 8 week plasma PK sample "real time"
- Yes/No PK results informs adherence counseling

Route	Source	Sample Time	[TFV] Plasma X Days post dose (Dose Day = Day 0)								
			0	1	2	3	4	5	6	7	8
Oral	¹⁴ C-TDF SD	C _{max} Median	175.0	69.4	27.6	10.9	4.3	1.7	0.7	0.3	0.1
		C _{max} L25%	136.0	54.0	21.4	8.5	3.4	1.3	0.5	0.2	0.1
Vaginal	MTN-001 SS	C _{max} Median	3.9	1.5	0.6	0.2	0.1	0.0	0.0	0.0	0.0
		C _{max} L25%	2.2	0.9	0.3	0.1	0.1	0.0	0.0	0.0	0.0
Rectal	MTN-006 SD	C _{max} Median	6.6	2.6	1.0	0.4	0.2	0.1	0.0	0.0	0.0
		C _{max} L25%	4.6	1.8	0.7	0.3	0.1	0.0	0.0	0.0	0.0

- "Non-Adherence" @ assay LLOQ (pink) varies with route
- Quantitative Adherence oral 10 ng/mL c/w topical 0.3 ng/mL
- PBMC, hair, DBS insensitive +/or Tss too long
- Future: Single observed dose PLUS 1-2 samples enables individualized adherence thresholding (PK_{IND})

Summary

- Adherence can be differentiated from PK
- Dose-proportionality, Tss, variability data growingIndividual PK data improves adherence estimates
- Matrix depends on route of dosing, study duration Estimating adherence
 - Informs need for adherence intervention
 - Identify poor performer, improve or remove
- Problematic implementation with placebo trials
 - Most matrices insensitive for topical dosing
 - EMS superior/complementary to PK for adherence
 - Continuous + sensitive to holidays
 - Logistical, financial feasibility?

Acknowledgements

MTN-001 Study Team

- Clinical Pharmacology Analytical Laboratory
- Ayyappa Chaturvedula, Pharmacometrician

Sponsors

- NIH (UM1 AI068633, UM1 AI068613, UL1 RR025005)
- Gilead Sciences

